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Abstract Transient conjugated forced convection in the thermal entry region of a thick-walled
annulus, filled with a homogeneous and isotropic porous medium, has been numerically
investigated using finite-difference techniques. Non-Darcian effects as well as axial conduction of
heat have been considered. The flow is assumed to be hydrodynamically fully developed and steady
but thermally developing and transient. The thermal transient is initiated by a step change in the
prescribed isothermal temperature on the outer surface of the external tube of the annulus while
the inner surface of the internal tube is kept adiabatic. A parametric study is carried out to
explore the effects of the Darcy number, the inertia term, the Peclet number and the porous
medium heat capacity ratio on the transient thermal behavior in a given annulus.

Nomenclature
ai = radial grid size scaling factor,

(Ri+1 ± Ri)/(Ri ± Ri±1)
aj = axial grid size scaling factor,

(Zj+1 ± Zj)/(Zj ± Zj±1)
CE = Ergun coefficient, � �= ����������

180�
p

5

c = specific heat capacity
d = pore size
Da = Darcy number, K/(�r3

2)
h = radial thickness of any medium
J = medium parameter, = 1 for porous

medium and = 2 for solid walls
k = thermal conductivity
ke = porous medium effective thermal

conductivity, �kf � �1ÿ ��ks

kf = thermal conductivity of fluid
kR = thermal conductivity ratio, Ks/ke

ks = thermal conductivity of the solid
matrix of the porous medium

K = permeability, ±� u / (dP/dZ)

Ks = thermal conductivity of the solid walls
of the annulus

l = elementary representative volume
length scale

L = system length scale, = r3 in the present
case

m = number of axial increments in the
numerical mesh network

n = number of radial increments inside the
fluid-saturated porous medium

ns1 = number of radial increments inside the
wall of the internal tube

ns2 = number of radial increments inside the
wall of the external tube

N1 = dimensionless inner radius of internal
tube, r1/r3

N2 = dimensionless outer radius of internal
tube, r2/r3

N4 = dimensionless outer radius of external
tube, r4/r3
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Introduction
Fluid flow and heat transfer in fluid-saturated porous media have a wide range
of applications. Prominent among these are packed-bed chemical reactors,
transpiration cooling, filtration, thermal insulation techniques, regenerative
(direct-contact) heat exchangers, catalytic converters in exhaust systems of
locomotive internal combustion engines, flows in soils, aquifers and petroleum
extraction. In conventional heat transfer analyses, the temperature or the heat
flux at the fluid-wall interface is commonly prescribed. Accordingly, the energy
equation for the fluid alone can be solved to obtain the temperature field. The
results obtained are therefore only good for heat transfer in flows bound by
walls having extremely small thermal resistance and, in transient cases,
infinitely large thermal diffusivity.

In reality, the wall thermal resistance and diffusivity are finite and hence the
thermal conditions at the fluid-wall interface are different from those imposed
at the outer surface of the solid wall. Consequently, the thermal conditions at

p = pressure
po = pressure of the fluid at channel

entrance
P = dimensionless pressure, (p ± po)/�e uD

2

Pe = Peclet number, uD r3/�e

Pr = effective Prandtl number,
�f=�f�e � �f=�e

qw = interfacial heat flux at the interface of
outer wall with fluid, ÿke��@T=@r�r3

Qw = dimensionless interfacial heat flux at
the interface of outer wall with fluid,
qw /[ ke (To ± Tw) /r3] = �@�=@R�R=1

r = radial coordinate
r1 = inner radius of internal tube
r2 = outer radius of internal tube
r3 = inner radius of external tube
r4 = outer radius of external tube
R = dimensionless radial coordinate, r/r3

Re = Reynolds number,
uD�f

�����
K
p

=�f � uD

�����
K
p

=�f

t = dimensionless time, ��e=r3
2

T = temperature
Tint= interface temperature on the inner

surface of the external tube of the
annulus

TM = mixing-cup (mixed-mean) temperature,Rr3

r2

urTdr=
Rr3
r2

urdr

To = initial temperature
Tw = heated wall temperature
u = volume averaged axial velocity, �up

uD = Darcian (bulk) axial velocity
up = pore velocity in the axial direction
U = dimensionless axial velocity, u/uD

y = radial distance measured from the
inner boundary of any medium

z = axial coordinate
Z = dimensionless axial coordinate,

z�e=�r3
2uD�

Greek symbols
� = thermal diffusivity
�e = porous medium effective thermal

diffusivity, ke/(c�f

�R = thermal diffusivity ratio, �s=�e

�s = thermal diffusivity of solid walls
� = dimensionless temperature,

(T ± Tw)/(To ± Tw)
�int = dimensionless temperature on the inner

surface of the external tube,
(Tint ± Tw) / (To ± Tw)

�m = dimensionless mixing-cup (mixed-mean)
temperature, (TM ± To)/(Tw ± To) =R1
N2

RU�dR=
R1
N2

RUdR

� = density
� = porosity of porous medium (ratio of

pore volume to total volume)
� = dynamic viscosity
� = kinematic viscosity, �=�
� = time
� = heat capacity ratio of porous medium,

��f cf � �1ÿ ���scs=��f cf�
Subscripts
f = fluid properties
o = initial or inlet conditions
R = ratio
s = solid properties
w = wall conditions
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the fluid-wall interface are not known a priori and can only be obtained by
solving the conjugate problem in which the heat conduction in the solid is
dependent upon the convective heat transfer in the fluid and vice versa.
Accordingly, the energy equations for both the solid and the fluid have to
solved simultaneously.

Design calculations of heat exchangers are commonly based on steady-state
heat transfer values. However, transient heat transfer information is needed for
predicting the performance during start-up and shut-down periods. Moreover,
to procure precise thermal control of heat exchangers one has to know their
unsteady behavior. A review of the porous-media literature reveals that most of
the available investigations on forced convection consider only steady-state
problems, particularly flows over a flat plate and in parallel plate channels and
circular tubes.

Traditional studies on porous media primarily utilize Darcian models[1,2].
The non-Darcian effects, involving inertia forces and viscous forces along the
solid boundaries become more significant as the flow velocity increases or
within high porosity media[3,4]. These non-Darcian effects in steady forced
convection over a horizontal plate were investigated for the constant porosity
case by Vafai and Tien[5], Beckermann and Viskanta[6] and Nakayama et
al.[7,8]. Based on the Brinkman-extended flow model and for constant porosity,
Kaviany[9] investigated numerically the laminar flow through a porous
channel bound by two isothermal parallel plates. Vafai and Kim[10] obtained
exact solutions for the velocity and temperature fields of fully developed forced
convection in a porous channel bound by two parallel plates. Poulikakos and
Renken[11] conducted a numerical investigation to determine the effects of flow
inertia, variable porosity, and a solid boundary on fluid flow and heat transfer
through porous media bound by parallel plates or in a circular pipe.

The lack of either theoretical or experimental data concerning the problem of
transient conjugate heat transfer in porous annular passages motivated the
present work. Transient conjugate heat transfer to a laminar forced flow with
constant physical properties in the thermal entry region of a concentric porous
annulus is investigated. Cooling or heating starts after steady fully developed
velocity profiles are obtained and thermal transient is caused by a step change
in the isothermal temperature on the outer surface of the external tube while the
inner surface of the core tube is kept adiabatic.

Problem formulation
Figure 1 depicts the geometry, coordinate system and the finite-difference grid
used. The geometry consists of a concentric annulus filled with homogeneous
and isotropic porous medium through which a Newtonian fluid flows. The
walls of the annulus are of considerable finite thickness, the porous medium is
saturated with the fluid which is in local thermodynamic equilibrium with the
solid matrix and both the porous medium and the walls have constant physical
properties. The region under investigation begins at an axial location after the
flow has become hydrodynamically fully developed; due to the presence of the
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porous medium this location is very close to the duct entrance. Prior to the start
of the step change in the temperature of the outer surface of the external tube,
the fluid may either be in a thermal steady-state as a result of some previous
steady-state heat transfer process, or alternately, the fluid and the annulus
walls may be at the same uniform temperature, To. The transient conjugate
heat transfer process begins at (� > 0 with a step change in the isothermal
temperature of the outer surface of the external tube (from To to Tw) while the
internal surface of the inner tube is kept adiabatic.

Assuming inertial flow regime with no internal heat generation in the fluid, the
porous medium or the solid boundary walls and neglecting viscous dissipation
�2��@u=@z�2�, the governing volume-averaged continuity, momentum and
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energy equations[4], after using the dimensionless parameters given in the
nomenclature, reduce to the following non-dimensional equations, respectively:Z1

N2

RUdR � 1

2
�1 ÿ N2

2� �1�

1

R

d

dR
R

dU

dR
ÿ U

Da
�1 � CE Re U� ÿ 1

Pr

dP

dZ
� 0 �2�

�2ÿJ @�

@t
� �2ÿ J�U @�

@Z
� ��Jÿ1

R =R� @
@R

R
@�

@R
� ��Jÿ1

R =Pe2��@2�=@Z2�; �3-4�

where equation (3) is obtained by setting J = 1 and is applicable for the porous
medium while equation (4) is for the solid walls and is obtained by setting J = 2.

Due to the assumption of constant physical properties the energy equation,
equation (3) for the fluid is not coupled to the equations for the conservation of
mass and momentum (equations (1) and (2)). Thus, the hydrodynamics of the
flow in the present work are independent of both the temperature and time.
Therefore, the equations for the conservation of mass and momentum can be
solved to determine the velocity profile U, after which the energy equations
(equations (3) and (4)) can be solved, using the previously obtained U, to
determine the temperature field. The initial and boundary conditions for the
case under consideration are given in dimensionless forms as follows:

(1) for Z� 0 : U(N2) = U(1) = 0 (no-slip conditions for equation 2). . . . . . . . (5a)

(i–1,i–1,k+1)

t

z

R

(i+1,j–1,k+1)

(i,j,k+1)

(i–1,j+1,k+1)

(i,j,k+1/2)

(i–1,j+1,k)

(i,j,k)

(i+1,j+1,k)

∆ t/2
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  j

a ∆Z
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Figure 1c.
Three dimensional grid
for energy equation
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(2) for t� 0 : �f (R, Z, t) = �s (R, Z, t) = 1 (uniform temperature everywhere)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5b)

(3) for t > 0 the following thermal conditions are imposed:

. at Z = 0 and N2 < R < 1 : �f (R, 0, t) = 1 (uniform temperature at the
investigated-zone entrance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5c)

. at Z = 0 and N1 < R < N2 and 1 < R < N4 : @�s=@Z � 0 . . . . . . . . . . . (5d)

. for Z > 0 and R = N2 and R = 1 (solid-porous-medium interfaces):
�s= �f and KR �@�s=@R� � @�f=@R (continuity of heat flow) . . . . . (5e)

. for Z > 0 and R = N1 : @�s=@R = 0 (adiabatic inner wall of internal
tube) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5f)

. for Z > 0 and R = N4 : �s�N4;Z; t� = 0 (step change in temperature)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5g)

. for Z!1 : @�s=@Z � @�f=@Z � 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5h)

Numerical methodology
The simultaneous hydrodynamic governing equations, equations (1) and (2)
have to be solved only once, since the assumed fully-developed velocity profile
U is unaffected neither by the axial location Z nor by the time t. It is worth
mentioning that Kaviany[4], in his discussion on porous media velocity
profiles, mentioned that `̀ in the computations of the velocity fields, where the
linear dimension of the computational domain is L, grid sizes of 0.1

����
K
p

are
needed to capture the boundary-layer phenomenon reasonably accurately. If a
uniform mesh is used, then l=�0:1 ����

K
p � nodes are needed. Noting that

L >> l > d >>
����
K
p

, this requirement becomes rather impossible to meet. An
alternative will be variable grids ...''. Therefore, to achieve economical
computations and accurate results, variable grid discretization is needed in the
present work. Small grid sizes are needed near the boundaries to capture sharp
variations (large gradients), while large grid sizes are sufficient to reflect
smooth solution variations far away from the boundaries. Indeed, porous media
flow, specially in the inertial flow regime, is of uniform nature except very close
to the walls that it can almost be assumed as a slip flow; when applying the no-
slip conditions, a drastic change in the velocity is expected very close to the
boundaries and nearly uniform flow is only present afterwards. Therefore, in
solving for the velocity field, a very high stretching factor was used to
compress as many nodes as possible near the boundaries. On the other hand,
for the thermal field solution another variable mesh was used but with a
smaller stretching factor (and hence a smaller number of grid points) since the
temperature profiles do not change as drastically as the velocity near the
boundaries. To achieve balance between the two fields, the obtained velocity
profile was usually interpolated to fit in the new thermal domain distribution.
Variable grid discretization was obtained by using the following logarithmic
transformation[12] which refines the mesh near the two boundaries of every
medium.
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�y � "� �1ÿ "� ln�f�� �y�2"� 1�=h� ÿ 2"g=f� ÿ �y�2"� 1�=h� � 2"g�
ln ���� 1�=��ÿ 1�� ;

�6�
in which " = 0.5 in order to refine the mesh equally near y = 0 and y = h. For
this transformation, the metric �@�y=@y� and the inverse transformation are,
respectively, as follows

@ y
ÿ

@ y
� 2� 1ÿ "� � 2� � 1� �

h f� 2 ÿ �y�2"� 1�=h ÿ 2"�2 g ln �� � � 1�=�� ÿ 1� � �7�

and

y � h
� � 2"� � � � 1� �= � ÿ 1� �� ��y

ÿ ÿ "� =�1ÿ"� ÿ� � 2"

2" � 1� � f1 � ��� � 1�=�� ÿ 1����y ÿ "�=�1 ÿ "�g
�8�

Thus the radial domain was discretized with finer mesh near the boundaries of
each medium. A special subroutine was constructed to give different
discretization modes, location of grid points and the resulting variable grid
scale factors (ai). Using the trapezoidal rule for variable grid discretization, the
integral continuity equation, equation (1) can be written, after applying the no
slip conditions on the two boundaries (U1 = Un+1 = 0), asXn

i�1

UiRi
ai � 1

2
�Ri � 1

2
�1ÿN2

2� �9�

Similarly, using central differences with variable mesh sizes, the momentum
equation, equation (2) can be written in the following linearized form, suitable
for a simple iterative updating technique.

1

Ri

Ui�1 ��a2
i
ÿ 1� U i ÿ a2

i Uiÿ1

ai �ai � 1� � Ri

� 2
Ui�1 ÿ�ai � 1� Ui � ai Uiÿ1

ai �ai � 1� �� Ri �2

ÿ 1� cE Re U�i
Da

Ui�1� ai Uiÿ1

ai�1
ÿ 1

Pr

dP

dZ
� 0

where Ui
* stands for the lagged velocity (from the previous iteration).

The above equation can be written as

C�iUiÿ1 �A�iUi � B�iUi�1 ÿDP � 0; �10�
where

C�
i
� ÿ ai

�ai� 1� Ri � Ri
� 2

�ai � 1�� R2
i

ÿ 1� CE Re U�i
Da

ai

ai �1
;
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A�i �
ai ÿ 1

ai Ri � Ri

ÿ 2

ai � R2
i

;

B�i �
1

ai �ai � 1� Ri � Ri

� 2

ai �ai � 1�� R2
i

ÿ 1� CE Re U�i
Da

1

ai � 1
;

DP � 1

Pr

dP

dZ
; and ai � �Ri�1 ÿ Ri�=�Ri ÿRiÿ1�

Excluding the Prandtl number (Pr), the present conjugate heat transfer problem
is governed by nine dimensionless parameters, namely �; �R; kR;N1;N2;N4;
CE Re, Da, and Pe. Of these nine parameters, only three (N2, CE Re and Da)
influence the velocity field. The conventional heat transfer problems for
boundary-layer flows in concentric annuli in the absence of porous media[13-
15] are governed by only two parameters, namely, the Prandtl number of the
fluid and the annulus radius ratio (N2). Thus, due to the presence of the porous
medium and the consideration of both the conjugated heat transfer and axial
conduction of heat, eight other similarity parameters are needed to describe the
problem. The Peclet number is needed due to the consideration of the axial
conduction of heat �@2�=@Z 2�. To solve for the velocity field U, the values of N2,
CE Re and Da should be selected. Then, the application of equation (10) with i =
2, 3, ..., n (i.e. in the porous medium region; with the starting values of Ui

*

assumed) together with equation (9) (applied to the whole cross section) gives n
linear equations in the unknown values of U2, U3, U4, ..., Un and [(dP/dZ)/Pr].
Solving these equations by means of a special form of Gauss-Jordan elimination
scheme[16], one obtains the unknown values of Us and [(dP/dZ)/Pr]. Now, the
obtained values of U's are fed back as updated values of U* in the same system
of equations and the iterative solution process is continued until converged
values (within an acceptable tolerance) of Us and [(dP/dZ)/Pr] are obtained. In
the present work, the new pressure gradient term as well as the maximum
velocity component are compared with the previously obtained values. If the
difference in the pressure gradient term is greater than 10±6 or if the maximum
velocity difference is greater than 10±10 a new iteration is initiated. Moreover,
for the cases which have studied, the matrix of coefficients pertaining to
equation (10) is diagonally dominant. Accordingly, no problems have been
faced on the invertibility of such matrices.

Having obtained the velocity profile U, the transient energy equations
(equations (3) and (4)) can now be solved numerically. This might be done by
the application of well known iterative solvers based on the preconditioned
conjugate gradient method. However, in the present work, this has been done
by applying central differences about the point (i, j, k+1/2), with variable grid
discretization in both the R and Z directions while grid points are equally
spaced in the fictitious t-direction. The ADI (Alternating-Direction Implicit)
technique was used. In the ADI technique, each energy equation is replaced by
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two equations (one per each half time-step, �t/2) and each of them is implicit in
only one direction and explicit in the other direction[17]. Thus, the energy
equations can be replaced by the following four difference equations of which
the first couple is implicit only in the R-direction while the second couple is
implicit only in the Z-direction.

Ct��k�1=2 ÿ �k�i;j � Cz1��j�1 � �a2
j ÿ 1��j ÿ a2

j �jÿ1�i;k
� Cz2��j�1 ÿ �aj � 1��j � aj�jÿ1�i;k
� CR1��i�1 � �a2

i ÿ 1��i ÿ a2
i �iÿ1�j;k�1=2

� CR2��i�1 ÿ �ai � 1��i � ai�iÿ1�j;k�1=2

�11-12�

and

Ct��k�1 ÿ �k�1=2�i;j � Cz1��j�1 � �a2
j ÿ 1��j ÿ a2

j �jÿ1�i;k�1

� Cz2��j�1 ÿ �aj � 1��j � aj�jÿ1�i;k�1

� CR1��i�1 � �a2
i ÿ 1��i ÿ a2

i �iÿ1�j;k�1=2

� CR2��i�1 ÿ �ai � 1��i � ai�iÿ1�j;k�1=2

�13-14�

where

Ct � 2�2ÿJ=�t;Cz1 � �Jÿ 2�Ui=�aj�aj � 1��Zj�;
Cz2 � 2�Jÿ1

R =�Pe2aj�aj � 1��Z 2
j �;CR1 � �Jÿ1

R =�ai�ai � 1�Ri�Ri�;
CR2 � 2�Jÿ1

R =�ai�ai � 1��R2
i �

Again, the above expressions apply with J=2 for fluid and J=1 for solid walls.
The above two couples of equations can be rewritten in the following general

forms:

Ci�iÿ1;j;k�1=2 �Ai�i;j;k�1=2 � Bi�i�1;j;k�1=2 � Di �15-16�

where

Ci � a2
i CR1 ÿ aiCR2; Ai � Ct ÿ �a2

i ÿ 1�CR1 � �1� ai�CR2;

Bi � ÿCR1 ÿ CR2; and Di � Ct�i;j;k � Cz1��j�1 � �a2
i ÿ 1��j ÿ a2

i �jÿ1�i;k�
Cz2��j�1 ÿ �ai � 1��j � ai�jÿ1�i;k

and

Cj�i;jÿ1;k�1 �Aj�i;j;k�1 � Bj�i;j�1;k�1 � Dj �17-18�

where
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Cj � a2
j CZ1 ÿ ajCZ2; Aj � Ct ÿ �a2

j ÿ 1�CZ1 � �1� aj�CZ2;

Bj � ÿ CZ1 ÿ CZ2; and

Dj � Ct�i;j;k�1=2 � CR1��i�1 � �a2
i ÿ 1��i ÿ a2

i �iÿ1�i;k�1=2

� CR2��i�1 ÿ �ai � 1��i � ai�iÿ1�i;k�1=2

After reading the problem parameters, the first couple of equations (equations
(15) and (16)) are solved for the intermediate values �k+1/2. These intermediate
values are then used in the second couple of equations (equations (17) and (18)),
thus leading to the solution �i,j,k+1 at the end of the whole time interval �t. The
coefficient matrix in both directions is tridiagonal, i.e. each couple of equations
produces a system of linear equations with a tridiagonal matrix for which the
Thomas method can be used to obtain the solution.

At each cross-section (i.e. a value of j), the following are used: a forward-
difference representation of the boundary condition equation (5f) at i=1, the
energy equation, equation (16) applied in the inner solid wall with i = 2, 3, ...,
ns1, a finite-difference representation of the boundary condition equation (5e) at
i=ns1+1 (i.e. at R = N2) with a backward difference in the solid and a forward
difference in the porous medium, the energy equation, equation (15) applied in
the porous medium with i varies from ns1+2 until ns1+n, a finite-difference
representation of boundary condition equation (5e) at i = ns1+n+1 (i.e. at R = 1)
with a forward difference in the porous medium and a backward difference in
the solid wall, and finally equation (16) applied in the outer solid wall with i
varying from ns1+n+2 until ns1+n+ns2+1. Thus, for each value of j one
obtains ns1+n+ns2+1 linear algebraic equations in the same number of
unknown values of �i,j,k+1/2. Thomas method, which requires low computer
storage, has been used to obtain �i,j,k+1/2 for each value of j, starting from j = 2
until j = m; thus, the intermediate values �i,j,k+1/2 for all grid points are
obtained. Now, for each i (i.e. a line of a constant value of R) equations (17) and
(18) together with conditions equations (5d) and (5h) can similarly be used to
obtain �i,j,k+1 with j varying from 2 to m±1. Again, for each value of i, Thomas
method is used to find all the unknown values of � on this line of constant R.
This is repeated for all values of i until the entire grid is again swept and hence,
all the unknown values of � at the end of the time interval �t are obtained. The
complete process of employing the two couples of difference equations in turn
over successive time steps each of duration �t/2 is then repeated so that we can
advance in the time domain until steady- state conditions are reached.

Results and discussion
While computations can be performed for any combination of the nine
controlling dimensionless parameters (�, �R, kR, N1, N2, N4, CE Re, Da, and Pe),
the objective here is to present a sample of the results that illustrate the
phenomena pertinent to conjugate heat transfer and the effect of the presence of
a porous medium on the transient thermal behavior of the system under
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consideration. The computations were carried out for only one annular
geometry of N1 = 0.3, N2 = 0.5 and N4 = 1.2. The radius ratio 0.5 (for the porous
medium region) was chosen as it represents a typical annular geometry far
enough from a parallel plate channel (for which the radius ratio is unity).

The validation of the present algorithm and computer code as well as the
independence of the obtained numerical results of the grid sizes were first
bench-marked for relatively simple known cases, then it was checked for the
present case. For example, to verify the adequacy of the numerical scheme used
to obtain the velocity profile in the present work, a comparison was made at the
non-porous media limit (at Da = 1010 and CE Re = 0) with the well known fully
developed annular velocity profile in concentric annuli and excellent agreement
was obtained. Moreover, doubling the number of grid points did not alter the
obtained velocity profile and pressure drop, although the number of iterations
was slightly reduced. For more details pertaining to the verification of the
adequacy of the present numerical computations and other computational
aspects the reader may refer to [18].

Figures 2a and 2b clarify, respectively, the effect of Darcy number (Da) and
the inertia term (CE Re) on the velocity profile inside the annulus. As can be
seen from Figure 2a, the velocity profile varies between two limits, the non-
porous media regime and the slug flow regime. For a given CE Re, as Darcy
number increases (i.e. the permeability increases) the velocity profile
approaches the non-porous limit. On the other hand, the slug flow limit is
approached as Da decreases.

For a given Da of 10±3, Figure 2b shows that the flow is attracted toward the
non-porous limit as the inertia term (CE Re) is reduced, while it becomes of more
uniform nature as the inertia term is increased. This is expected since higher
inertia forces mean more bulky flows. The velocity profile changes
asymptotically until it reaches a certain profile near the non-porous media
regime, where any reduction in the inertia term does not change the profile any
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more. Moreover, the margin of variation of the velocity profile with the inertia
term is relatively small compared with that due to Darcy number. For values of
Da � 2�10±10 it has been found that the effect of the inertia term (in the range
of 2�10±20� CE Re� 10) is almost negligible on the velocity profile.

Thermal and control engineers are not frequently concerned with the details
of the temperature profiles but only with the mixing-cup (mixed-mean or bulk)
temperature (�m) and the wall heat flux. The practical importance of �m derives
from its use in combination with the heat capacity and the inlet temperature of
the fluid without need to obtain the local and then (by integration) the average
heat transfer coefficients. On the other hand, as was explained by Faghri and
Sparrow[19], the local Nusselt number in conjugate heat transfer problems
include three unknowns, namely, qw, �int and �m; hence it is not very
informative in such conjugate cases. Instead, the interfacial heat flux
distribution is usually presented.

Figure 3a gives the variation of �m with time at some selected axial locations
(Z). Due to the step decrease in the outer surface temperature (from 1 to 0), the
bulk temperature (�m) obviously decreases with time and similarly with Z. As
can be seen from this figure, as the time decreases, curves corresponding to
different values of Z separate from the conduction envelope. In other words, a
curve corresponding to a given Z separates from the conduction envelope at the
time of onset of convection; before this time the heat is transferred from the
boundary wall to the porous medium solely by conduction. Indeed, the time
needed for the onset of convection (i.e. the point of separation from the pure
conduction envelope) increases with Z. On the pure conduction envelope, the
fluid velocity is too large so that the fluid reaches a cross-section under
consideration (i.e. a value of Z) before the radial heat diffusion signal coming
from the suddenly heated outer wall of the annulus. On the other hand, for a
given value of Z, �m continues its development with time until steady-state
conditions are reached (without further variation in �m; the time required to
reach the steady-state value of �m is proportional to the axial location. As
Z!1 and t!1, �m can asymptotically approach the outer wall temperature
(�m = 0) if there were no outer-wall thermal resistance.

Figure 3b shows, for the same conditions and axial locations of Figure 3a,
the transient variation of the interfacial outer-wall temperature with time. A
horizontal line of zero value represents the no-wall conduction case. Thus, it
can be concluded from this figure that neither at the beginning of the time
domain nor near the entrance cross-section (Z = 0), the temperature profiles are
close to the no-wall heat transfer line. Consequently, the consideration of
conjugated heat transfer is of great importance near the channel entrance and
at the start of the transient heat transfer process. The variation of the
interfacial wall heat flux with time is presented in Figure 3c for the same
conditions as used to develop Figures 3a and 3b. In light of the previous
discussion on Figures 3a and 3b, the results of Figure 3c are self-explanatory.

For given values of the other eight controlling parameters (N1, N2, N4 CE Re,
Da, �; �R and kR), Figures 4a-c present the effect of Peclet number (Pe) on the
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interfacial wall heat flux (Qw). For a considerably large value of t (t= 5�10±3),
Figure 4a gives the curves of the variation of Qw with axial distance (Z)
corresponding to some selected values of Pe while Figure 4b gives these curves
for a very small value of t (t = 9�10±5, i.e. just after the thermal transient
starts). It is evident from Figure 4a that the smaller the value of Pe the higher
the value of Qw and the larger the thermal entrance length. This is because the
lower the value of Pe the slower the development of the thermal boundary
layer. However, as can be seen from Figure 4a, the curve corresponding to Pe =
120 is very close to that corresponding to Pe = 1. In other words, from the
presented results, it is concluded that for Pe greater than about 120 the axial
conduction of heat (@2�=@Z2) can be assumed negligible provided that the value
of the time (t) is large. For very small values of t and particularly very near to
the entrance (i.e. small values of Z), neglecting the axial conduction is not a
valid assumption as can be observed from Figure 4b. Accordingly, axial
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conduction can never be overlooked for very small values of the time (close to
the moment of initiation of the thermal transient); the effect of axial conduction
decays as the time elapses provided that Pe is very large (� 120).

For a given Z, Figure 4c presents the variation of the interfacial heat flux (Qw)
with time for the selected values of Pe as a parameter. It can be seen that, for each
value of Pe, there exists a peak for Qw. This peak represents the end point of the
thermal lag of the system due to the thermal resistance of the wall (wall
thickness effect). A careful scrutiny of this figure reveals the effect of axial
conduction on heat transfer to/from the porous medium. For the no-wall
conduction limit, i.e. Pe !1, the peak is sharp and steady state is reached
relatively early. As the axial conduction influence increases (i.e. Pe decreases),
the peak is flattened and slightly shifted forward, yielding a longer transition
period. The shorter time required to reach the steady state at high values of Pe is
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due to the fact that the thermal energy in the heated wall of the annulus is carried
away downstream by the porous medium and its flowing fluid without having
backward conduction in either the porous medium or the walls of the annulus.

Figures 5a and 5b clarify the effect of the porous medium thermal capacity
ratio (�) on the interfacial outer-wall heat flux. For a given time (t), Figure 5a
gives the variation of Qw with Z for various selected values of �. As can be seen
from this figure, increasing the value of � increases Qw, particularly after some
distance from the entrance, and the thermal entrance length becomes shorter.
This is attributed to the higher radial conduction to/from the solid matrix of the
porous medium as � increases and to the domination of convection very near to
the entrance while conduction becomes a pronounced means of heat transfer
further downstream. Recall that higher values of � imply more solid matrix
material within the porous medium. Figure 5b provides, for a given Z, the
transient variation of Qw for various values of �. As � increases both Qw and
the time required to reach steady state increase. The effect of � on Qw is less
pronounced as the steady-state conditions are approached.

The effect of Darcy number (Da) on the interfacial outer-wall heat flux is
given in Figure 6. For a given time, Figure 6 gives the axial variations of Qw for
some selected values of Da. For a given Z, decreasing Da causes an increase in
the value of Qw. This is attributed to the fact that as Da decreases, the inertia
forces become more pronounced and hence the fluid becomes more capable of
carrying thermal energy downstream (i.e. Qw increases).

For a given Z, Figure 7 demonstrates the transient variation of the interfacial
wall heat flux for various values of the inertia term CE Re. This figure shows
that increasing the inertia term increases the interfacial wall heat flux. This is
anticipated since larger values of CE Re imply higher velocities and hence
higher values of heat transfer.

Finally, it might be noteworthy that no results have been presented for the
effect of wall-to-porous-medium thermal diffusivity ratio (�R) and thermal
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conductivity ratio (KR). Indeed, this is due to space limitations and because the
pertinent results are qualitatively similar to those previously known in the
literature; in this regard the reader may refer to a recent publication[20].

Conclusions
Transient conjugated forced convection in the thermal entry region of a thick-
walled annulus, filled with an isotropic and homogeneous porous medium, has
been numerically investigated. The thermal transient has been obtained due to
a sudden change in the outer surface temperature of the external tube. The
axial conduction in both the porous medium and the thick walls of the annulus
have been considered. It has been found that the axial conduction can be
neglected for Peclet number greater than 120. Darcian and non-Darcian effects
have been considered in the investigation and a parametric study has shown
the following. Both the Darcy number and the inertia term have influence on
the fully developed velocity profile and consequently on the heat transfer to the
porous medium. Increasing the porous medium thermal capacity ratio
increases the heat transfer and reduces the thermal entrance length.
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